

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION:	BACHELOR OF PROPERTY STUDIES/NATIONAL DIPLOMA IN PROPERTY STUDIES/GEOMATICS		
QUALIFICATION CODE:	27DPRS, 27DLMR, 27DLAD, 27BPRS	LEVEL:	5
COURSE CODE:	MSS511S		MATHEMATICS AND STATISTICS FOR SPATIAL SCIENCES
SESSION:	JUNE 2023	PAPER:	THEORY
DURATION:	3 HOURS	MARKS	100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	Dr. Jacob Ong'ala	
MODERATOR	Mr.Andrew Roux	

INSTRUCTION

- 1. Answer all the questions
- 2. Show clearly all the steps in the calculations
- 3. All written work must be done in blue and black ink
- 4. You may refer to your notes or any other materials

PERMISSIBLE MATERIALS

Non-programmable calculator without cover THIS QUESTION PAPER CONSISTS OF 5 PAGERS (including the front page)

SECTION A

QUESTION 1 - 13 MARKS

(a) Solve for f
$$\frac{1}{5}(2f-3) + \frac{1}{6}(f-4) + \frac{2}{15} = 0$$
 [3 mks]

(b) Use completing the square method to solve the following quadratic equation

$$0 = x^2 - 2x - 8$$

[5 mks]

(c) Solve the following systems of equation (You may use any method)

$$[5 \text{ mks}]$$

3x-4y = 8

QUESTION 2 - 16 MARKS

(a) Evaluate the following expressions

(i)
$$\frac{3+\sqrt{(5^2-3^2)}+2^3}{1+(4\times 6)\div(3\times 4)} + \frac{15\div 3+2\times 7-1}{3\times\sqrt{4}+8-3^2+1}$$
 [5 mks]

(ii)
$$2\frac{1}{2} - \left(\frac{2}{5} + \frac{3}{4}\right) \left(\frac{5}{8} \times \frac{2}{3}\right)$$

[3 mks]

(b) Simplify the following expressions completely

(i)
$$[(s+2t)-(s+3t)]-[(2s+3t)-(-4s+5t)]$$

[3 mks]

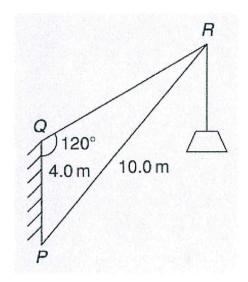
(ii)
$$(a^2\sqrt{b}\sqrt{c^3})(\sqrt{a}\sqrt[3]{b^2}c^5)$$

[3 mks]

(c) A training college has 480 students of which 150 are girls. Express this as a fraction in its simplest form. [2 mks]

QUESTION 3 - 08 MARKS

- (a) A box of resistors increase in price from \$N 45 to \$N 52. Calculate the percentage increase. [2 mks]
- (b) A wooden pole is 208 m long. If you divide it in the ratio of 7:19, what will be length of each piece. [3 mks]
- (c) If y is inversely proportional to x and y=15.3 when x=0.6. Determine
 - (i) Coefficient of proportionality k


[2 mks]

(ii) The value of y when x=1.5

[1 mks]

QUESTION 4 - 10 MARKS

(a) PR represents the inclined jib of a crane and is 10.0 m long. PQ is 4.0 m long. Determine the inclination of the jib to the vertical and the length of tie QR. [4 mks]

(b) In a triangle below, determine;

(i) angle Z [1 mks]

(ii) side XZ [2 mks]

(iii) side XY [1 mks]

(iv) Area of triangle XYZ [2 mks]

SECTION B

QUESTION 5 - 23 MARKS

(a) Indicate whether each of the following variables is quantitative or qualitative. State its measurement scale. (example of data is shown in the bracket) [5 mks]

	Variable	Qualitative/Quantitative	Measurement scale
a	Education level of university staff		
b	Name of patients admitted to a mental health clinic		
С	Weights of babies born in a hospital during a year		
d	Gender of babies born in a hospital during a year)	_	
е	Students ADM No (3749001,22003481)		

(b)	Using the data below	, 15; 26; 1	3; 33; 22;	; 14; 27; 15;	32; 23; 5; 26	; 25; 14; 34;	13; 15; 22; 15;
	28; 10; 18; 21; 24; 20;	18; 34; 20)				

(i) Draw a frequency table for the following data

[10 mks]

(ii) Draw a Histogram for the above data

[8mks]

QUESTION 6 - 13 MARKS

Use the following set of data to answer the questions that follow;

13 14 9 17 21 10 15 22 19 13 22 13 19 23 17 21 10 9 20 18

Calculate the following

(a)	Range	[1 mks]
(b)	Mode	[1 mks]
(c)	Median	[1 mks]
(d)	Geometric Mean	[2 mks]
(e)	Arithmetic mean	[2 mks]
(f)	Variance	[2 mks]
(g)	Standard Deviation	[2 mks]
(h)	coefficient of variation.	[2 mks]

QUESTION 7 - 17 MARKS

The Bradford Electric Illuminating Company is studying the relationship between kilowatthours (thousands) used and the number of rooms in a private single-family residence. A random sample of 10 homes yielded the following. Number of Kilowatt-Hours Number of Kilowatt-Hours Rooms (thousands) Rooms (thousands).

(a) Find the correlation coefficient r

[9mks]

No. rooms (X)	KWH(000) (Y)
12	9
9	7
14	10
6	5
10	8
8	6
10	8
10	10
5	4
7	7

(b) Fit a regression model for the data

[6mks]

(c) Use the regression model above to find Y when X=30.

[2mks]

- END -